Forecasting Hand and Object Locations in Future Frames

نویسندگان

  • Chenyou Fan
  • Jangwon Lee
  • Michael S. Ryoo
چکیده

This paper presents an approach to forecast future locations of human hands and objects. Given an image frame, the goal is to predict presence and location of hands and objects in the future frame (e.g., 5 seconds later), even when they are not visible in the current frame. The key idea is that (1) an intermediate representation of a convolutional object recognition model abstracts scene information in its frame and that (2) we can predict (i.e., regress) such representations corresponding to the future frames based on that of the current frame. We design a new two-stream convolutional neural network (CNN) architecture for videos by extending the state-of-the-art convolutional object detection network, and present a new fully convolutional regression network for predicting future scene representations. Our experiments confirm that combining the regressed future representation with our detection network allows reliable estimation of future hands and objects in videos.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Future Instance Segmentations by Forecasting Convolutional Features

Anticipating future events is an important prerequisite towards intelligent behavior. Video forecasting has been studied as a proxy task towards this goal. Recent work has shown that to predict semantic segmentation of future frames, forecasting at the semantic level is more effective than forecasting RGB frames and then segmenting these. In this paper we consider the more challenging problem o...

متن کامل

Improving Stock Return Forecasting by Deep Learning Algorithm

Improving return forecasting is very important for both investors and researchers in financial markets. In this study we try to aim this object by two new methods. First, instead of using traditional variable, gold prices have been used as predictor and compare the results with Goyal's variables. Second, unlike previous researches new machine learning algorithm called Deep learning (DP) has bee...

متن کامل

Moving Objects Tracking Using Statistical Models

Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...

متن کامل

Haptic mental rotation revisited: multiple reference frame dependence.

The nature of reference frames involved in haptic spatial processing was addressed by means of a haptic mental rotation task. Participants assessed the parity of two objects located in various spatial locations by exploring them with different hand orientations. The resulting response times were fitted with a triangle wave function. Phase shifts were found to depend on the relation between the ...

متن کامل

Evaluation, Modeling and Forecasting of Neyshaboor Urban Development with Emphasis on Earthquake

Background and Objective: In the process of urban development, many agricultural and peri-urban agricultural land have been changed. On the other hand, the location and development of urban areas in many cases has led to ignoring natural hazards and natural hazards from threats It is the security of cities, one of the most important of these natural hazards is the earthquake. The purpose of thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.07328  شماره 

صفحات  -

تاریخ انتشار 2017